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By using the curved space-time Klein-Gordon equation, the form of the wave 
function of a scalar particle near a nonrotating black hole is obtained. It is shown 
that although the radial wave function oscillates infinitely rapidly near the black 
hole, the probability density remains finite even on the event horizon. This is 
consistent with the fact that the Schwarzschild surface is nonsingular. An 
expression is given for the large angular momentum scattering differential cross 
section by comparing the asymptotic form of the radial wave equation with the 
corresponding Coulomb radial wave equation in ordinary quantum mechanics. 

1. INTRODUCTION 

A problem which has received considerable attention in general relativ- 
ity is the exact nature of the surface r = 2M in the Schwarzschild metric for 
the empty region surrounding an isolated body of mass M located at the 
spatial origin. A thorough understanding of this apparently singular surface 
is essential in the study of a phenomenon such as gravitational collapse. 
Although the above singularity can be removed by means of an analytic 
continuation (Fronsdal, 1959) or a coordinate transformation (Kruskal, 
1960), there have been several attempts to establish physically that the 
Schwarzschild surface is indeed nonsingular. For example, the invariants 
associated with the curvature tensor are found to be nonsingular at r = 2M. 
The nonsingular nature of the surface r = 2M in the space-time manifold 
has also been established by analyzing the light cone along a radial geodesic 
(Finkelstein, 1958; Misner, 1968). It is now generally accepted that the 
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Schwarzschild surface forms only an absolute event horizon (Penrose, 1969). 
More recently, it was shown (Prasanna, 1972) that the relative acceleration 
between neighboring particles in the field of an isolated mass M is finite at 
the surface r = 2M and hence the surface is nonsingular on purely physical 
grounds. 

In this paper, we investigate the behavior of the wave function and the 
corresponding probability density of a scalar particle of mass ~t near a 
superdense body of mass M which has a geometrical radius r - 2 M. This 
might be the case for an object that is collapsing beyond the event horizon 
to form a black hole. We also consider the scattering of the scalar particle 
by such a black hole. 

The plan of the paper is as follows. In Section 2, we derive the 
appropriate radial Kle in-Gordon equation for a scalar particle in the 
curved space-time background of the exterior Schwarzschild metric. In 
Section 3, we derive the solutions of the radial wave equation valid near the 
Schwarzschild event horizon r = 2M and examine the (radial) probability 
density. In Section 4, we give an expression for the scattering differential 
cross section by comparison with the usual nonrelativistic Coulomb scatter- 
ing problem. Section 5 contains some conclusions. 

2. THE CURVED SPACE-TIME K L E I N - G O R D O N  WAVE 
EQUATION 

The curved space-time Kle in-Gordon  wave equation for a scalar 
particle of rest mass I ~ h / c  is given by 

( 0 + ~ 2 ) q "  = 0  (1) 

in units where h = c = 1 ,  where [] denotes the curved space-time wave 
operator defined by 

[] ~ gik Vi~7 k (2) 

where V~ denotes covariant derivative and ,I, is the wave function of the 
particle. 

Now, for a static spherically symmetric body of mass M, we have for 
the exterior field the usual Schwarzschild solution 

ds 2 = ( 1 - 2 M / r )  dt  2 - ( 1 - 2 M / r )  - I  dr  z - rZ d a  2 

df~2 = dO 2 + sin20dq~ 2 

in spherical polar coordinates ( t ,  r ,  O, qO. 

(3) 
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Using the metric (3), we find by direct calculation that the wave 
equation (1) takes the form 

[(1 - 2 M / r )  -1 02/012 _ (1 - 2 M / r  ) 02~Or 2 - ( 2 / r ) (1  - M / r  ) O/Or 

- ( 1 / r  2) 02/002 - -  ( 1 / r  2 )cot O 8 / 0 0  

_ (a/r2sin20) 02/0qfl + ~2] ff'(t, r, 0, q5) = 0 (4) 

Assuming that the variables can be separated in the usual way, we put 

'~t'(t, r, 8, q~) = r ( t ) R ( r ) O (  8, qJ) 

in equation (4) and obtain the following three equations (6)-(8): 

where w 
wave; 

(5) 

d2T  
- -  + Tw 2 = 0 (6) 
dt 2 

is a separation constant, corresponding to the frequency of the 

( 1 - 2 M / r ) 2 d 2 R / d r  2 + ( 2 / r ) ( 1 - 2 M / r ) ( 1  - M / r )  dR~dr  

+ [ w 2 - ( 1 - 2 M / r ) l ~ 2 - ( 1 - 2 M / r ) l ( l + l ) / r 2 ] R = O  (7) 

where 1 is a nonnegative integer, which is the orbital angular momentum 
quantum number of the scalar particle; 

[ 82/882 + cot 0 8 / 8 8  + cosec2082/Oqfl + l ( l  + 1)] | = 0 (8) 

Equation (8) has the usual solution 

O,,,( O, , )  = YF (cos 8)exp(imq~) (9) 

where Yfl'(cosS) are spherical harmonics and m is the magnetic quantum 
number, an integer such that Iml ~< l, while equation (6) has the general 
solution 

T ( t )  = A e - ; "  + Be ;w' (10) 

where A, B are arbitrary constants. Hence the eigensolutions of the scalar 
wave equation (4) are given by 

' a / ( t , r ,O,q~)=NR(r)Y;" (cosO)expi (mq~-T-wt )  (11) 

where R ( r )  is a solution of the radial wave equation (7) and N is a 
normalization factor. 
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Now, the radial wave equation (7) is equivalent to 

( l / r 2 ) ( 1 - 2 M / r ) ( d / d r ) [ r 2 ( 1 - 2 M / r )  dR~dr] 

+ [ w  2 - ( 1 - 2 M / r ) t L  2 - ( 1 - 2 M / r ) l ( l + l ) / r  2] R = 0 (12) 

and, on putting 

R = u / r  

this radial equation takes the form 

(1 - 2M/r  )( d/dr )[(1 - 2M/r  ) du/d,'] 

+ [ w 2 - ( 1 - 2 M / r ) { l 1 2  +2M/r3 + l ( l+ l ) / , ' 2 } ]u=O (13) 

Finally, the substitution 

dr* = d r ( 1 - 2 M / r )  -1 

r* = r + 2M ln(r/2M - 1) (14) 

reduces (13) to the effective-15otential form 

d2u/dr *z +[w 2 - ( 1 - 2 M / r ) { / ~ 2 + 2 M / r  ~ + l ( l + l ) / r 2 } ] u = O  (15) 

where 

r=r(r') 

which has the form of a one-dimensional wave equation with an indepen- 
dent variable r*. The effective potential V(r*) is given by 

V2(r*) = ( 1 - 2 M / r ) { # 2 + 2 M / r 3 + l ( l + l ) / r z } ,  r=r(r*)  (16) 

which clearly vanishes on the event horizon r = 2M. 

3. RADIAL SOLUTION NEAR EVENT HORIZON 

In the region near the surface r = 2M, let 

r - - 2 M + x  

where x << 2M. Then we find that the radial wave equation (7) reduces to 

[dZ/dx2 + ( 1 / x - 1 / Z M ) d / d x  + ( a + b / x  + p / x 2 ) ] y ( x ) = O  (17) 

on neglecting ( x / 2 M )  ~ and higher orders, where a, b, p are constants 
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given, respectively, by 

a =It z +31( l+1) / (4M2),  

p = 4 M 2 w  2 

995 

b = - [2Mtt  2 + l ( l + l ) / ( 2 M ) ]  

(18) 

Equation (17) is a confluent hypergeometric differential equation which 
on integration leads in the general case to a confluent hypergeometric 
function and in a particular case to a Bessel function (Bateman, 1953). In 
the general case when 

the solution of (17) is 

where 

q = 16M2/x 2 + 12l(1 + 1) v~ 1 (19) 

y (x )  = x -1 /2exp(x /4M)W(r ,  ~, ~) (20) 

r =  [ { 1 - 2 1 ( 1 + 1 ) - 8 M 2 / z  2 } ( 1 -  q ) ' / q / ( 8 M  z) 

~= +_2iMw, ~ -- ( x / Z M ) ( 1  - q)l/2 

and W('r, ~', x) is Whittaker's function which is a solution of the differential 
equation 

d 2 z / d x Z + { - 1 / 4 + r / x + ( 1 / 4 - ~ 2 ) / x 2 } z = O  (21) 

The Whittaker function W ( r , f , x )  is given in terms of the confluent 
hypergeometric function 1F~( p; s; x) by 

W ( r , f , x ) = x t / Z + f e x p ( - x / Z ) l F l ( 1 / Z + f - r ; l + 2 f ; x )  (22) 

where iF l (p ;  s; x) --- Y",,%0[(P),,x"/(s),,n!], in the usual notation. On the 
other hand, if q = 1, the solution of (17) is 

y (x )  = e x p ( x / 4 M ) J . ( ( )  (23) 

where v =  +_2iMw, ~=[{1-21( l+l) -8MZlzZ}(x /M)]l /2 ,  and J.(x) is a 
solution of the Bessel equation 

x 2 dZy/dx 2 + x dy/dx + (x 2 - v2)y = 0 (24) 
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Now, in the region near the event horizon, we have x - 0 and so ~ - 0. 
Hence using (22) in (20) we obtain for the general case the asymptotic form 

y (x )  - Cx~(1 + x / 4 M )  

where the complex amplitude C is given by 

C= [ (1 -q ) / (4M2)]  1/4+~/2 

(25) 

Combining this solution with the angular part (9) and the solution (10), we 
obtain for the form of the wave function near the Schwarzschild surface 

q" - Cx~(1 + x / a M  ) Yr'(cosO )expi( m g wt ) (26) 

The radial function x ~ = exp(_+ 2iMwln x) gives a rapid oscillatory char- 
acter to the ingoing and outgoing waves as x - + 0 +  (i.e., near the 
Schwarzschild event horizon). However, if we use the boundary condition in 
Matzner (1968), namely, that at r = 2M, the waves are pure ingoing (i.e., 
there is no scalar radiation from the black hole), the (radial) probability 
density at the event horizon is given by (25) as 

p = [ I R ( r ) I 2 ] = ~ M  + ( 1 - ~ M )  2 (27) 

and so is finite and tends to 1 as r ~ 2M+. 
The corresponding (radial) probability current density (flux vector) 

S(r, t)  = 6~(~(h/ im)Vxt  ") is also found to be 

 w[r( r;] 
Sr = r - 2 M  2-M + 1 -  ~ (28) 

which ~ oo as r ~ 2M+. 

4. SCATTERING OF T H E  SCALAR PARTICLE 

We now derive the asymptotic form of the radial wave equation (7) and 
compare the result with the corresponding nonrelativistic Coulomb problem 
as was done in Matzner (1968) in the case of a massless scalar particle. 
Instead of the coordinate transformation (14) which contains a logarithmic 
term and hence is not suitable for the asymptotic region, one can use the 
transformation 

1 
R r ( l _ 2 M / r ) l / i u ( r  ) 
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to bring equation (7) into the form 

d2u 
dr z 

- -  + [ w 2 / ( 1 - 2 M / r )  2-  ~2/'( 1 - 2 M / r ) -  l(l + 1)/{  r 2 ( 1 - 2 M / r ) )  

+ M 2 / { r 4 ( 1 - 2 M / r ) 2 } ] u ( r ) = O  (29) 

It has not been possible to solve this radial equation in a closed form. 
However, in the asymptotic region, r ---, ~ and r >> 2M. Hence (29) gives 
the asymptotic form of the radial equation as 

d2u 
dr 2 

- -  + [w2-/ . t  2 +(4Mw2-2M~tZ)/r  

+ { 1 2 M 2 w 2 - 4 M 2 t ~ Z - l ( l + l ) } / r 2 ] u ( r ) = O  (30) 

on neglecting (2M/r)  3 and higher orders. Here the term in 1/r  is an 
attractive Newtonian coupling for 2w 2 >/~2. 

On redefining a modified orbital angular momentum quantum number 
l' by 

l '(l'+ 1) = l(l + 1) -12M2w 2 + 4M2/~ 2 

and dropping the dash, (30) takes the form 

d2u 
dr 2 

_ _ + [ w  2 _ ~ 2 + ( 4 M w  2 _ 2 M b t 2 ) / r _ l ( l + l ) / r  2 ] u ( r ) = 0  (31) 

which we can compare with the Coulomb radial equation 

d 2y I 
t- [ k 2 - 2Yk / r  - I ( l  + l ) / r  2 ] y, = 0 (32) 

dr  2 

to find the correspondence 

2 - M .  - 

and 

k 2 ( _ ) w  2 - t12 
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The regular partial wave solution of (31) therefore has the asymptotic form 

R=lu(r)r-~~176 k r - Y l n 2 k r - l  (33) 

where - o / is the equivalent Coulomb phase shift given by 

o r = arg F ( l  + 1 + iy ) (34) 

where 

r = ( M r -  - 2 n w 2 ) / ( w  2 - f . ) t / 2  (35) 

On ignoring the logarithmic term in (33), the scattering differential 
cross section for the equivalent Coulomb problem is then given, for large/ ,  
by 

do _ 1 I E(21+l)exp(_2iot)pt(cosO)2 (36) 
df~ (2k )  2 I 

for 8 =~ 0, where k 2 = w 2 _/,2, and the forward-scattering amplitude is 
infinite. This result is formally identical with that for a massless scalar 
particle in Matzner (1968), except that the frequency is now modified 
according to w 2 ~ (w 2 - / ,2 ) .  

5. C O N C L U S I O N S  

We have shown that although the wave function of a scalar particle 
oscillates infinitely rapidly in the neighbourhood of a black hole of mass M, 
the probabili ty density remains finite there. It is well known that the wave 
function q" is, per se, not a physical entity, whereas the probabili ty density 
I't'12 is. The above investigation therefore confirms physically that the 
Schwarzschild surface is indeed nonsingular. 

Finally, the particle is scattered and for large l, the equivalent Coulomb 
phase shift and differential cross section are given by (34) and (36), 
respectively. 
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